Abstract
An adaptive robust controller that simultaneously rotates the tower and moves the trolley is proposed for a tower crane. The robust behavior of the controller is derived through the sliding mode technique, and its adaptive performance is obtained based on the adaptive model-reference approach. The controller operated well regardless of the significant variation of system parameters, internal noises, and external disturbances. Specifically, the controller did not require a priori knowledge of cargo mass and friction factors because an adaptation mechanism is integrated to estimate system parameters. Emulating experimental results showed that the proposed controller consistently stabilized all system responses.